Deductive, Inductive and Abductive Reasoning - TIP Sheet (2022)

Deductive, Inductive and Abductive Reasoning

TIP Sheet
DEDUCTIVE, INDUCTIVE, AND ABDUCTIVE REASONING

Reasoning is the process of using existing knowledge to draw conclusions, make predictions, or construct explanations. Three methods of reasoning are the deductive, inductive, and abductive approaches.

(Video) Introduction to Inductive and Deductive Reasoning | Don't Memorise

Deductive reasoning: conclusion guaranteed
Deductive reasoning starts with the assertion of a general rule and proceeds from there to a guaranteed specific conclusion. Deductive reasoning moves from the general rule to the specific application: In deductive reasoning, if the original assertions are true, then the conclusion must also be true. For example, math is deductive:

If x = 4
And if y = 1
Then 2x + y = 9

In this example, it is a logical necessity that 2x + y equals 9; 2x + y must equal 9. As a matter of fact, formal, symbolic logic uses a language that looks rather like the math equality above, complete with its own operators and syntax. But a deductive syllogism (think of it as a plain-English version of a math equality) can be expressed in ordinary language:

If entropy (disorder) in a system will increase unless energy is expended,
And if my living room is a system,
Then disorder will increase in my living room unless I clean it.

In the syllogism above, the first two statements, the propositions or premises, lead logically to the third statement, the conclusion. Here is another example:

(Video) How to Argue - Induction & Abduction: Crash Course Philosophy #3

A medical technology ought to be funded if it has been used successfully to treat patients.
Adult stem cells are being used to treat patients successfully in more than sixty-five new therapies.
Adult stem cell research and technology should be funded.

A conclusion is sound (true) or unsound (false), depending on the truth of the original premises (for any premise may be true or false). At the same time, independent of the truth or falsity of the premises, the deductive inference itself (the process of "connecting the dots" from premise to conclusion) is either valid or invalid. The inferential process can be valid even if the premise is false:

There is no such thing as drought in the West.
California is in the West.
California need never make plans to deal with a drought.

In the example above, though the inferential process itself is valid, the conclusion is false because the premise, There is no such thing as drought in the West, is false. A syllogism yields a false conclusion if either of its propositions is false. A syllogism like this is particularly insidious because it looks so very logical–it is, in fact, logical. But whether in error or malice, if either of the propositions above is wrong, then a policy decision based upon it (California need never make plans to deal with a drought) probably would fail to serve the public interest.

Assuming the propositions are sound, the rather stern logic of deductive reasoning can give you absolutely certain conclusions. However, deductive reasoning cannot really increase human knowledge (it is nonampliative) because the conclusions yielded by deductive reasoning are tautologies-statements that are contained within the premises and virtually self-evident. Therefore, while with deductive reasoning we can make observations and expand implications, we cannot make predictions about future or otherwise non-observed phenomena.

(Video) Abductive Reasoning Explained - Cognitive Skills #26

Inductive reasoning: conclusion merely likely
Inductive reasoning begins with observations that are specific and limited in scope, and proceeds to a generalized conclusion that is likely, but not certain, in light of accumulated evidence. You could say that inductive reasoning moves from the specific to the general. Much scientific research is carried out by the inductive method: gathering evidence, seeking patterns, and forming a hypothesis or theory to explain what is seen.

Conclusions reached by the inductive method are not logical necessities; no amount of inductive evidence guarantees the conclusion. This is because there is no way to know that all the possible evidence has been gathered, and that there exists no further bit of unobserved evidence that might invalidate my hypothesis. Thus, while the newspapers might report the conclusions of scientific research as absolutes, scientific literature itself uses more cautious language, the language of inductively reached, probable conclusions:

What we have seen is the ability of these cells to feed the blood vessels of tumors and to heal the blood vessels surrounding wounds. The findings suggest that these adult stem cells may be an ideal source of cells for clinical therapy. For example, we can envision the use of these stem cells for therapies against cancer tumors [...].1

Because inductive conclusions are not logical necessities, inductive arguments are not simply true. Rather, they are cogent: that is, the evidence seems complete, relevant, and generally convincing, and the conclusion is therefore probably true. Nor are inductive arguments simply false; rather, they are not cogent.

It is an important difference from deductive reasoning that, while inductive reasoning cannot yield an absolutely certain conclusion, it can actually increase human knowledge (it is ampliative). It can make predictions about future events or as-yet unobserved phenomena.

(Video) Abductive Reasoning for Data Scientists (A Quick Introduction) | Philosophy of Data Science

For example, Albert Einstein observed the movement of a pocket compass when he was five years old and became fascinated with the idea that something invisible in the space around the compass needle was causing it to move. This observation, combined with additional observations (of moving trains, for example) and the results of logical and mathematical tools (deduction), resulted in a rule that fit his observations and could predict events that were as yet unobserved.

Abductive reasoning: taking your best shot
Abductive reasoning typically begins with an incomplete set of observations and proceeds to the likeliest possible explanation for the set. Abductive reasoning yields the kind of daily decision-making that does its best with the information at hand, which often is incomplete.

A medical diagnosis is an application of abductive reasoning: given this set of symptoms, what is the diagnosis that would best explain most of them? Likewise, when jurors hear evidence in a criminal case, they must consider whether the prosecution or the defense has the best explanation to cover all the points of evidence. While there may be no certainty about their verdict, since there may exist additional evidence that was not admitted in the case, they make their best guess based on what they know.

While cogent inductive reasoning requires that the evidence that might shed light on the subject be fairly complete, whether positive or negative, abductive reasoning is characterized by lack of completeness, either in the evidence, or in the explanation, or both. A patient may be unconscious or fail to report every symptom, for example, resulting in incomplete evidence, or a doctor may arrive at a diagnosis that fails to explain several of the symptoms. Still, he must reach the best diagnosis he can.

The abductive process can be creative, intuitive, even revolutionary.2 Einstein's work, for example, was not just inductive and deductive, but involved a creative leap of imagination and visualization that scarcely seemed warranted by the mere observation of moving trains and falling elevators. In fact, so much of Einstein's work was done as a "thought experiment" (for he never experimentally dropped elevators), that some of his peers discredited it as too fanciful. Nevertheless, he appears to have been right-until now his remarkable conclusions about space-time continue to be verified experientially.

(Video) LSAT Logical Reasoning Inductive vs Deductive Reasoning

References
1. Verfaillie, Catherine. "Adult Bone Marrow Stem Cells Can Become Blood Vessels." News release from the University of Minnesota. Jan. 30, 2002. June 1, 2005. <http://www.sciencedaily.com/releases/2002/01/020131074645.htm>

2. Thagard, Paul and Cameron Shelley. "Abductive reasoning: Logic, visual thinking, and coherence." Waterloo, Ontario: Philosophy Department, Univerisity of Waterloo, 1997. June 2, 2005. < http://cogsci.uwaterloo.ca/Articles/Pages/%7FAbductive.html>

FAQs

What is the difference between deductive reasoning and inductive reasoning and abductive reasoning? ›

Deductive reasoning, or deduction, is making an inference based on widely accepted facts or premises. If a beverage is defined as "drinkable through a straw," one could use deduction to determine soup to be a beverage. Inductive reasoning, or induction, is making an inference based on an observation, often of a sample.

How do you pass a deductive reasoning test? ›

To improve your deductive reasoning skills, you need to firstly simplify the information that you have been given. You are not expected to question the veracity of the data – whether it is written or mathematical – since the answer is provided within the question.

What are the 4 types of reasoning? ›

Four types of reasoning will be our focus here: deductive reasoning, inductive reasoning, abductive reasoning and reasoning by analogy.

Is deductive reasoning difficult? ›

Deductive reasoning tests and how they work in the job selection process. Deductive reasoning tests can be challenging and are usually used in jobs that require technical knowledge.

Which is more effective teaching method deductive or inductive? ›

Inductive tends to be more efficient in the long run, but deductive is less time consuming. Much depends on the teacher and the students. You might try and compare both of these approaches at certain points in your teaching to see which is more effective for your students.

How do we use inductive reasoning in everyday life explain with an example? ›

Here are some examples of inductive reasoning: Data: I see fireflies in my backyard every summer. Hypothesis: This summer, I will probably see fireflies in my backyard. Data: Every dog I meet is friendly.

Videos

1. Research methods for Data Analytics Lecture 1 - Prof M Tsvere
(tinashe marume)
2. Brass Wisdom Episode 35 Forms Of Reasoning
(Baron Von Brass)
3. inductive & deductive reasoning with examples and exercises
(maam maya)
4. INDUCTIVE REASONING Test Tips, Questions and Answers! (Multiple-Choice Test Questions)
(CareerVidz)
5. 4 Kinds of reasoning ( Intuition , Analogy , Inductive Reasoning and Deductive Reasoning )
(Educare Channel)
6. "Introduction to Deductive Reasoning" by Leonard Peikoff
(Ayn Rand Institute)

Top Articles

You might also like

Latest Posts

Article information

Author: Laurine Ryan

Last Updated: 12/02/2022

Views: 6019

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.